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Corrosion-Related Experimental
Program

+ Evolution of waste package environment

+ Container studies

% Cladding studies

<+ Drip shield studies

+ Performance confirmation tools



Near Field Environment
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+ Deliquescence humidity (DH) of salt
mixtures is lower than that of pure salts

Confirmatory studies to understand the DH of
salt mixtures formed from J-13 and other YM
waters

<+ Simulation of evaporative concentration
using OLI speciation software

<+ MULTIFLO simulation of temperature, RH,
and chemistry at drift surface

+ Presence of drip shield may influence the
effect of deliquescence and chemistry of
condensed water



Semi-Empirical Model
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+ Repassivation potential, E,, is affected mainly by anionic
concentrations, temperature, and metallurgy

+ Corrosion potential, E_ ., is affected mainly by redox kinetics,
surface state, pH, temperature, and metallurgy

+ Pit growth is affected mainly by transport processes within
pits.



Issues Related to Container Corrosion
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+ Localized corrosion initiation and growth
Effect of near-field environment
Fabrication

Minor impurities in environment
+ Passive, uniform dissolution
Measurement, modeling
<+ Stress corrosion cracking
Is there a critical potential?

Effect of cyclic loading

Minor impurities in environment



Validity Of Repassivation Potential
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Conditions For Localized Corrosion Of
Four Candidate Allovys
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+ Repassivation potential

(E,.ey) Used as a critical
potential for the initiation of

localized (crevice) corrosion
in NRC/CNWRA TPA code

» Improved corrosion

resistance in the order
316L.<825<625<(C-22

» Critical chloride level for C-

22 close to saturation of
NaCl




Crevice Corrosion vs. Temperature
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Effect Of Fabrication On Localized
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Uniform Dissolution of Container
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+ The measured dissolution rates of alloy 22
range from 2x10~ to 7x10# mm/y

+ Assuming a constant dissolution rate,
penetration of 20-mm wall would occur in
30,000 to 1 million years

¢ Short-term measurements do not consider
defect generation or metastable events

+ The effect of fabrication processes on
dissolution rates are not considered
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Long-term Prediction of Uniform

Corrosion

Alloy

aqueous
solution
<+ Models

Point defect model

Semiconductive oxide model
< Experiments
Stoichiometry of dissolution
Dissolution rate 5



Uniform Dissolution Experiments
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< Evaluate the
stoichiometry of
dissolution

+ Sensitively measure
rate of dissolution




Critical Potential for SCC
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Critical Potential for SCC
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Effect of Minor Environmental Species

on SCC
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» The effect of anticipated temperatures at the repository on
corrosion and SCC

Test temperature used by the State much higher than
expected for wet conditions

» The effect of anticipated pH of water contacting the containers

- cracking can be observed at low pH even without lead
» The range of Pb, Hg, As concentrations needed to enhance SCC.
» The speciation of Pb in evaporated water

- Preliminary calculations using EQ3/6, to predict the effect
of evaporation of J-13 water at 100°C

The pH is predicted to rise from ~8 to 10.5

The dominant dissolved species is PbCO,(aq) at 1.2x1073
molal

» The range of potentials anticipated in the repository



Use of Analogues

| | J | | ==yl

+ Archeological and natural analogues have
been proposed and studied
Josephenite (Ni;Fe type)
Iron

Bronze/copper

+ Industrial experience with alloys similar to
alloy 22 exist



Alloy 22 - Brief History
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» Fourth generation in C-family of alloys
Haynes and others discovered Ni-Cr alloys ca. 1898
Alloy C developed by Union Carbide in 1930’s
Alloy C-276 developed by BASF in early 1960’s
Alloy C-4 developed in 1973

Alloy C-22 developed in 1981

Other equivalent alloys (59, 622, etc.) commercialized (ca.
1988)

> Major applications include flue gas scrubbers, chemical process
fluids, down hole tubing, pulp and paper bleach systems

» Need to put these industrial experiences in a common
framework - repassivation potential vs. corrosion potential




Considerations for Analogues
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+ Similarity in electrochemical response

Josephenite (Ni,Fe,Co) vs. ferchromide (Cr,Fe, , )
vis a vis alloy 22

+ Mechanistic information
localized corrosion of mineral analog
localized corrosion of meteorites/iron artifacts
+ Improve confidence in conceptual model

Map performance in other industrial applications
of a class of alloys



A Proposed Approach for Analog
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+ Investigate mineral assemblage and
morphology of ferchromide

+ Identify whether any specific corrosion mode
1S present

+ Assess the geochemical history associated
with the mineral

+ Compare to model prediction (e.g.,
repassivation vs. corrosion potential)




Performance Confirmation
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» PC improves confidence in models and
aboratory tests

L)
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» PC can include many approaches, including
laboratory and field tests and monitoring

L)

+ Sensor performance is an important
consideration

+ Different types of sensors can be evaluated in
simulated heater tests in the lab



Simulated Drift
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+ Objective is to evaluate sensors, not hydrological models
+ Crushed tuff from YM w/ 4” simulated drift space
+ Tube heater to simulate heat from radioactive decay

+ Water equilibrated w/ tuff to simulate ground water percolated in at
1-2 L/day

Sensor Array Cell “Drift” Space

Corrosion Coupon Galvanic Couple Sensor




Galvanic Sensor
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Summary

| | § 1 | [m i

+ Repassivation potential can be used to

predict occurrence of localized corrosion and
SCC

< Fabrication effects need to be studied

+ Long-term passive dissolution needs to be
better understood

+ Sufficient thought should be given to the
development and limitations of performance
confirmation/monitoring tools



Elongation to failure ratio

Critical Potential for SCC
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Backup Slides
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Alloys
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% Type 316L SS: Fe-17%Cr-10%Ni-2.5% Mo

= Alloy 825: Fe-42%Ni-21.5%Cr-2%Cu-3%Mo
% Alloy 625: Ni-21.5%Cr-9%Mo-3.7%Nb

% Alloy C-22:Ni-3%Fe-21.5%Cr-13.5%Mo-3%W




Background: Repository Temperature
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Preliminary MULTIFLO Result
provided by Debra Hughson, 02/20/01



Deliquescence Humidity and Aqueous
or Dry Air Corrosion
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Relative Humidity (%)
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Uniform Corrosion Rates
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Starting [CI], pH Temp, | Potential, | Anodic Corrosion | Lifetime of
Condition of || molar °C mVscg Current Rate, 20 mm Thick
Alloy C-22 Density, mny/yr WP Barrier,

| ) ) A/em? ) Years
As-received 0.028 | 8 20 200 2 x10-9 2x10-5 | 1,007,455
As-received 0.028 | 8 95 200 3x10-8 3x104 | 67,163
As-received 0.028 | 0.7 95 200 7 x10-8 7x10-4 | 28,784
As-received “ 4 8 95 200 3 x10-8 3x104 | 67,163 Jl
As-received " 4 8 95 400 4 %108 4 x10-4 | 50,372
TPA 3.2 Calculation Low Dissolution Rate IL 6 x10-8 7x10-4 | 33,581
TPA 3.2 Calculation High Dissolution Rate <” 2 x10-7 2 x10-3 10,074
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Current Density, Alcm?

Uniform Corrosion
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